If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-5t+0.4=0
a = 4.9; b = -5; c = +0.4;
Δ = b2-4ac
Δ = -52-4·4.9·0.4
Δ = 17.16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{17.16}}{2*4.9}=\frac{5-\sqrt{17.16}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{17.16}}{2*4.9}=\frac{5+\sqrt{17.16}}{9.8} $
| 4(w-1)-4=-3(-6w+2)-2w | | 3x+11=-5x-19 | | 3x+11=3x-19 | | 1.9=5.6x+2.8 | | 39=-8w+5(w+6) | | -2(v+6)=-6v+12 | | (4x+9)+(7x-5)+(16x-27)=180 | | 4(v-8)-7v=-26 | | -7(c+4)=10 | | 3^4x=75 | | 7x5=18 | | 7v=3v+24 | | 4x+5=3(3x+3) | | 4,7+s=9 | | 120+10a=100+120 | | 18+2x=15x | | 235=145-w | | x=(2x-3) | | -4(x+6)+29=8-5x | | (7x-26)+(5x-27)+(10x-23)=180 | | 4(x+10)-4=57-3x | | n/7-7=7 | | 10x-2=4x=40 | | (5x-27)+(7x-26)+(10x-23)=180 | | 13y^2+40=1 | | (9x+17)+(3x-4)+(6x-31)=180 | | -4=-3x-3 | | 9(x-7)=5x-1 | | 3x–6=15x+12 | | 1x-2x-3x=180 | | 9/36=x^2 | | 94-60-2x=180 |